Udemy - Using Data Science for Retail Store Segmentation
- CategoryOther
- TypeTutorials
- LanguageEnglish
- Total size2 GB
- Uploaded Byfreecoursewb
- Downloads70
- Last checkedMay. 02nd '25
- Date uploadedMay. 01st '25
- Seeders 15
- Leechers13
Infohash : BBF56A2A8E04C6E70C8E858E45AD7FD39389B6A0
Using Data Science for Retail Store Segmentation
https://WebToolTip.com
Published 4/2025
Created by Antonio de Jesus Campos Rodriguez
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Level: Intermediate | Genre: eLearning | Language: English | Duration: 63 Lectures ( 4h 1m ) | Size: 2 GB
Use data science for store segmentation: data preprocessing, EDA, clustering, and segment profiling in retail
What you'll learn
An approach for applying the data science lifecycle to a real-world retail segmentation problem
Preprocess and transformation of retail data for analysis
Performing exploratory data analysis
Interpretation of PCA components in a clustering context
How to build and evaluate stable store clusters using machine learning
Profiling segments in cluster analysis using Decision Trees
Describe and present store segments in a way that supports decision-making
Requirements
Python Programming
BigQuery
Machine Learning (PCA, Decision Tree, K-Means)
Scikit-Learn
Webscraping Selenium
Files:
[ FreeCourseWeb.com ] Udemy - Using Data Science for Retail Store Segmentation- Get Bonus Downloads Here.url (0.2 KB) ~Get Your Files Here ! 1 - Introduction
- 1 -Intro.pptx (289.8 KB)
- 1 -Introduction.mp4 (30.2 MB)
- 1 -Segmentation_Steps (1).ipynb (2.0 MB)
- 1 -Webscraping_Performance_Metrics (1).ipynb (26.8 KB)
- 1 -bigquery_code.sql (6.6 KB)
- 1 -sas_code.sas (12.4 KB)
- 2 -Business Problem.mp4 (7.1 MB)
- 2 -Business_Problem_Store_Segmentation.pdf (1.8 KB)
- 3 -Variables CU.pptx (1.2 MB)
- 3 -Variables.mp4 (14.0 MB)
- 1 -Idea Decision Tree Feature Importance to Explain Membership to a Cluster.mp4 (19.8 MB)
- 1 -cluster_tree_profiling.pdf (28.7 KB)
- 2 -Function to plot distribution for a given variable (cluster vs population).mp4 (28.5 MB)
- 2 -plot_segment_vs_population_distribution.pdf (32.9 KB)
- 3 -Increasing the number of variables appearing in feature importance.mp4 (37.4 MB)
- 3 -tree_feature_importance_methods.pdf (42.1 KB)
- 4 -A robust method to choose top feature importances along several random states.mp4 (58.0 MB)
- 4 -robust_feature_importance_per_cluster.pdf (36.1 KB)
- 5 -Interpretation of segment 1.mp4 (24.7 MB)
- 5 -Segment_1_Analysis_Complete.pdf (640.4 KB)
- 6 -Interpretation of segment 2.mp4 (15.0 MB)
- 6 -Segment_2_Analysis_Complete.pdf (821.8 KB)
- 7 -Interpretation of segment 3.mp4 (12.9 MB)
- 7 -Segment_3_Analysis_Complete.pdf (477.8 KB)
- 8 -Interpretation of segment 4.mp4 (11.7 MB)
- 8 -Segment_4_Analysis_Complete.pdf (737.4 KB)
- 1 -Final Results.pptx (2.2 MB)
- 1 -Overview of the 4 segments.mp4 (30.6 MB)
- 1 -Step 1- preparing_data_presentation.pdf (43.2 KB)
- 1 -Step 2 distribution_life_cycle_plot.pdf (40.6 KB)
- 1 -Step 3 pie_chart_gender_segment_vs_population.pdf (37.8 KB)
- 1 -Step 4 distribution_plot_weather_segment_vs_population.pdf (39.4 KB)
- 1 -Step 5 preprocess_radar_chart_data.pdf (38.1 KB)
- 1 -Step 6 section_contribution_segment_vs_population.pdf (48.9 KB)
- 1 -metricas_x_segmento escalado.xlsx (15.2 KB)
- 1 -participacion_seccion_x_segmento.xlsx (12.5 KB)
- 2 -Segment 1 Tech-Focused Small Stores.mp4 (34.1 MB)
- 3 -Segment 2 Electronics & Furniture for Seniors.mp4 (13.4 MB)
- 4 -Segment 3 Comfort-Oriented Family stores.mp4 (11.4 MB)
- 5 -Segment 4 Single-Customer budget Stores.mp4 (8.1 MB)
- 6 -Comment On Cumulative Profit and Turnover.mp4 (7.6 MB)
- 1 -Colab Connection to BQ (Extraction of Stores).mp4 (26.1 MB)
- 1 -colab connection.pdf (25.3 KB)
- 10 -Google Sheet (Stores Size) + Simple Preprocessing Processing.mp4 (28.4 MB)
- 10 -size_of_stores.pdf (25.2 KB)
- 11 -API Denue (Competition Around Stores).mp4 (108.8 MB)
- 11 -extracting_city_competition.pdf (44.2 KB)
- 2 -BigQuery Transactions.mp4 (37.1 MB)
- 2 -transactions_from_bigquery.pdf (34.7 KB)
- 3 -Existing Customer Segmentation.mp4 (34.9 MB)
- 3 -existing customer segmentation.pdf (43.4 KB)
- 4 -Webscraping.mp4 (128.6 MB)
- 4 -webscraping performance metrics.pdf (45.9 KB)
- 5 -Some Preprocessing On Output of Webscraping.mp4 (13.7 MB)
- 5 -some_preprocessing.pdf (22.1 KB)
- 6 -More Preprocessing On Output of Webscraping.mp4 (38.1 MB)
- 6 -more_preprocessing.pdf (24.5 KB)
- 7 -Cumulative Performance Metrics from Webscraping.mp4 (46.8 MB)
- 7 -more preprocesing cumulative metrics.pdf (39.3 KB)
- 8 -Economy of the City (BQ) + Some Preprocessing.mp4 (32.7 MB)
- 8 -environment_city_economy.pdf (19.6 KB)
- 9 -Weather (BQ) + Some Preprocessing.mp4 (9.5 MB)
- 9 -weather extraction.pdf (19.1 KB)
- 1 -Missing Values Due to Opening Dates.mp4 (40.4 MB)
- 1 -filter store and sections.pdf (276.6 KB)
- 2 -Intersecting Tables and Dataframes with Selected Stores and Sections.mp4 (42.4 MB)
- 2 -intersecting with relevant stores and sections.pdf (31.1 KB)
- 3 -Missing Values in Transactions Table.mp4 (53.2 MB)
- 3 -missing values in transactions.pdf (356.5 KB)
- 1 -Contribution of Sales per Section.mp4 (24.2 MB)
- 1 -sales_per_section_percentage_contribution.pdf (25.2 KB)
- 2 -Contribution per Life Cycle.mp4 (19.1 MB)
- 2 -life_cycle_contribution.pdf (21.1 KB)
- 3 -Contribution per Gender.mp4 (8.8 MB)
- 3 -gender_contribution.pdf (19.7 KB)
- 4 -Average Sales, Profit and Inventory.mp4 (50.7 MB)
- 4 -monthly_averages_inventory_profit_sales.pdf (23.8 KB)
- 5 -Cumulative Turnover and Cumulative Profit.mp4 (12.1 MB)
- 5 -cumulative_performance_metrics.pdf (28.8 KB)
- 6 -Average Ticket, Average Spending and Average Credit Limit.mp4 (10.5 MB)
- 6 -gasto_ticket_lc_promedio_code.pdf (355.0 KB)
- 1 -Top sections contributing to the total sales.mp4 (31.6 MB)
- 1 -top_sections.pdf (23.9 KB)
- 2 -Correlation Plots.mp4 (49.2 MB)
- 2 -correlation_plots.pdf (24.1 KB)
- 3 -Distribution Plots.mp4 (73.3 MB)
- 3 -distribution_plots.pdf (39.9 KB)
- 4 -Box plots.mp4 (28.7 MB)
- 4 -box_plots.pdf (27.0 KB)
- 1 -Winsorization, Yeo-Johnson Transformation and Standardization.mp4 (35.3 MB)
- 1 -data_transformation_functions.pdf (21.8 KB)
- 1 -transformations.pptx (1.2 MB)
- 2 -Transforming Top Sections.mp4 (36.2 MB)
- 2 -transform_top_sections.pdf (25.4 KB)
- 3 -Transforming Weather Variable.mp4 (9.5 MB)
- 3 -transform_weather.pdf (21.8 KB)
- 4 -Transforming Customer Variables.mp4 (18.0 MB)
- 4 -transform_customers.pdf (23.4 KB)
-
5 -Transforming Economy Variables.mp4 (12.0 MB)
Code:
- udp://tracker.torrent.eu.org:451/announce
- udp://tracker.tiny-vps.com:6969/announce
- http://tracker.foreverpirates.co:80/announce
- udp://tracker.cyberia.is:6969/announce
- udp://exodus.desync.com:6969/announce
- udp://explodie.org:6969/announce
- udp://tracker.opentrackr.org:1337/announce
- udp://9.rarbg.to:2780/announce
- udp://tracker.internetwarriors.net:1337/announce
- udp://ipv4.tracker.harry.lu:80/announce
- udp://open.stealth.si:80/announce
- udp://9.rarbg.to:2900/announce
- udp://9.rarbg.me:2720/announce
- udp://opentor.org:2710/announce